

# A novel development of deep neural network model for diagnosis of uterine sarcomas

Yusuke Toyohara<sup>1</sup>, Kenbun Sone<sup>1</sup>, Katsuhiko Noda<sup>2</sup>, Kaname Yoshida<sup>2</sup>,

1. Department of Obstetrics and Gynecology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.

2. SIOS technology, Inc., Tokyo, Japan.



Uterine sarcomas are **rare**, occurring in approximately 5 of 10,000 women.

Bosch. et al. Best. Pract. Res. Clin. Obstet. Gynaecol, 2012.

The five-year overall survival rate **does not typically reach 50%**, especially among patients in the advanced stages.

Burghaus. et al. Arch. Gynecol. Obstet. 2016.

Uterine myomas with degeneration frequently mimic uterine sarcomas on MRI, and misdiagnosis of uterine sarcomas as benign myomas is not uncommon.

Sun. et al. *Diagn. Interv. Imaging.* 2019.

#### Introduction ~Image features of uterine sarcomas and myomas~



|                                                  | Uterine myoma                                                             | Uterine sarcoma                                                                      |
|--------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Size                                             | Variable                                                                  | Variable (>10 cm, associated with poorer prognosis)                                  |
| Margins                                          | Well-defined                                                              | Irregular and ill-defined,<br>often nodular and with invasion of adjacent structures |
| Signal on T1WI                                   | Low to intermediate<br><b>High for fat content or hemorrhage</b>          | Heterogenous and low<br>High for hemorrhage from necrosis                            |
| Signal on T2WI                                   | Generally, homogenous low signal <b>Intermediate/high in degeneration</b> | Intermediate to high signal                                                          |
| DWI and ADC signal                               | Low DWI, low ADC SI: ordinary<br>Low DWI, high ADC SI: degenerated        | Generally high DWI and low ADC SI                                                    |
| ADC values (10 <sup>-3</sup> mm <sup>2</sup> /s) | 0.88-1.40                                                                 | 0.79-1.17                                                                            |
| Contrast-enhanced MRI                            | Variable                                                                  | Early heterogenous enhancement with central areas of contrast non-enhancement        |

SI: signal intensity, T1WI: T1-weighted images; T2WI: T2-weighted images.

Sun, *Diagnostic and Interventional Imaging*, 2019

Image features are **overlapped between uterine sarcomas and myomas**. In some cases, it is difficult to diagnose uterine tumors, especially **degenerated tumors**.

## Introduction ~Diagnosing problems of uterine tumors~





#### Accurate preoperative diagnosis is critical for patients.







#### **Artificial Intelligence (AI) : Reproduction of human's neural activity in a computer.**





#### **Training**



#### **Prediction**

Data: Unknown



Validation data set



#### Previous reports for imaging diagnosis of uterine sarcomas with AI



|   | Authors         | Years | Article                              | Images     | Sarcoma | Myoma | Accuracy                                              | DNN / Machine learning |
|---|-----------------|-------|--------------------------------------|------------|---------|-------|-------------------------------------------------------|------------------------|
| 1 | Malek et al.    | 2019  | European journal of radiology        | MRI        | 9       | 33    | accuracy 91%<br>AUC 0.972                             | Machine learning       |
| 2 | Xie et al.      | 2019  | European journal of radiology        | MRI        | 29      | 49    | accuracy 73.9%<br>AUC 0.83                            | Machine learning       |
| 3 | Nakagawa et al. | 2019  | Clinical Radiology                   | MRI<br>PET | 11      | 56    | AUC 0.92                                              | Machine learning       |
| 4 | Lakhman et al.  | 2018  | European radiology                   | MRI        | 19      | 22    | accuracy 75%                                          | Machine learning       |
| 5 | Gerges L et al. | 2018  | American Journal of<br>Roentgenology | MRI        | 17      | 51    | sensitivity 88.2%<br>specificity 78.4%                | Machine learning       |
| 6 | Wang et al.     | 2020  | European Radiology                   | MRI        | 53      | 84    | AUC 0.91                                              | Machine learning       |
| 7 | Malek et al.    | 2020  | Scientific Reports                   | MRI        | 21      | 84    | Accuracy 96.2%<br>Sensitivity 100%<br>Specificity 95% | Machine learning       |

No report which investigates diagnosis of uterine sarcoma using DNN.

\* Machine learning =conventional machine learning



**Objects of this study:** 

Investigation of **DNN model** for **imaging diagnosis of uterine sarcomas** 

**Our future goal:** 

Clinical application of our diagnosing DNN model in medical institutions



#### Methods ~study design~





## Methods: Patients and MR images





- Film-based MR imaging data
- Undergone pseudo-menopausal therapies.
- With other abdominal tumors (such as ovarian tumors and cysts).

| 15 types of MRI sequences                                   | Abbreviation |
|-------------------------------------------------------------|--------------|
| Axial T1-weighted image                                     | T1axi        |
| Sagittal T1-weighted image                                  | T1sag        |
| Fat suppressed axial T1-weighted image                      | fsT1axi      |
| Fat suppressed sagittal T1-weighted image                   | fsT1sag      |
| Axial T2-weighted image                                     | T2axi        |
| Sagittal T2-weighted image                                  | T2sag        |
| Coronal T2-weighted image                                   | T2cor        |
| Fat suppressed axial T2-weighted image                      | fsT2axi      |
| Diffusion-weighted image                                    | DWI          |
| Apparent diffusion coefficient map image                    | ADC          |
| Axial dynamic contrast-enhanced image                       | dynamicaxi   |
| Sagittal dynamic contrast-enhanced image                    | dynamicsag   |
| Axial fat suppressed contrast-enhanced T1-weighted image    | fsT1CEaxi    |
| Sagittal fat suppressed contrast-enhanced T1-weighted image | fsT1CEsag    |
| Coronal fat suppressed contrast-enhanced T1-weighted image  | fsT1CEcor    |

### Methods ~ overall flow of this study ~





\*MobileNetV2

MobileNetV2 is one type of DNN network which consists of 88 layers and has around 3.5million learning parameters.

\*\*Ensemble prediction

Ensemble prediction is one method of machine learning and, in a simple term, a type of majority decision.

### **Results** ~ comparison of diagnosing accuracy ~





#### **Results of individual MRI sequences.**







#### **TOP10 of combination sets of MRI sequences.**

| Combination<br>set | <sup>1</sup> Accuracy | Sensitivity | Specificity | ADC | DWI | dynamicaxi | i dynamicsag | fsT1axi | fsT1CEaxi | fsT1CEcor | fsT1CEsag | fsT1sag | fsT2axi | T1axi | T1sag | T2axi | T2cor | T2sag |
|--------------------|-----------------------|-------------|-------------|-----|-----|------------|--------------|---------|-----------|-----------|-----------|---------|---------|-------|-------|-------|-------|-------|
| Set 1              | 91.3%                 | 88.7%       | 94.0%       |     |     |            |              |         |           |           |           |         |         |       |       |       |       |       |
| Set 2              | 91.3%                 | 89.8%       | 92.9%       |     |     | •          | ٠            | •       | •         | ٠         | •         | •       | •       | •     | •     | •     | ●     | •     |
| Set 3              | 91.1%                 | 91.9%       | 90.3%       | •   | •   | •          | •            | •       |           | •         | •         | •       | •       |       | •     | •     | •     | •     |
| Set 4              | 91.0%                 | 87.8%       | 94.2%       | •   |     |            |              |         |           |           |           |         | •       |       |       |       |       | •     |
| Set 5              | 90.8%                 | 90.7%       | 90.9%       |     | •   | ٠          | •            | •       | •         | •         |           | •       | •       |       | •     | •     | •     |       |
| Set 6              | 90.5%                 | 90.5%       | 90.5%       |     | •   | •          | ٠            | •       | •         | •         |           | •       | •       |       | •     | •     | ●     | •     |
| Set 7              | 90.5%                 | 88.5%       | 92.5%       | •   | •   | •          | •            | •       | •         | •         | •         |         | •       |       | •     | •     | •     | •     |
| Set 8              | 90.5%                 | 89.6%       | 91.3%       | •   |     | •          | ٠            | •       | •         | •         | •         | •       | •       |       | •     | •     | •     |       |
| Set 9              | 90.4%                 | 89.0%       | 91.8%       |     | •   | •          | •            |         | •         | •         | •         | •       | •       | •     | •     | ●     | •     | •     |
| Set 10             | 90.3%                 | 91.9%       | 88.8%       |     | •   | •          | •            | •       | •         | •         | •         | •       | •       | •     |       | •     | •     | •     |
| Average            | 90.8%                 | 89.8%       | 91.7%       |     |     |            |              |         |           |           |           |         |         |       |       |       |       |       |

The results **combining MRI sequences can be better** than that of individual sequences. **Axial T2WI, sagittal T2WI** and **DWI** seem to be important sequences for DNN models.

## **Results** ~ **AI-supported** examination~



|                                                                 |               | Accuracy         | Sensitivity                      | Specificity        |
|-----------------------------------------------------------------|---------------|------------------|----------------------------------|--------------------|
| AI-supported                                                    | DNN model     | 90.8%            | 89.8%                            | 91.7%              |
|                                                                 | Specialists   | 87.3%            | 83.1%                            | 91.7%              |
|                                                                 | Practitioners | 90.8%            | 87.8%                            | 93.7%              |
| Radiological Radiological specialists (n=3) practitioners (n=3) |               | The results of I | DNN model in the 1 <sup>st</sup> | examination were p |

#### Comparison the average between 1st and 2nd examination.



DNN models can be helpful for diagnosing uterine sarcoma, especially **reducing occult tumors**, and **filling the gap** of readers skills.



#### **Our DNN model shows**

# **High diagnosing accuracy**

# Supporting ability to fill the gaps

# Supporting ability to reduce occult tumors



### Limitation of the first DNN model





### **Development of new DNN models**





## Overall flow of 3<sup>rd</sup> examination





### The evaluation for training data set





DNN models can recognize images containing tumors and keep high accuracy, which means new DNN model can automate preparation of MR images.

### The evaluation for validation data set





Our DNN models showed high diagnosing ability for the validation data set, which is important for clinical application.

### Conclusion



