
Investigation of artificial intelligence for imaging diagnosis of uterine sarcomas: devices for the improvement of diagnostic accuracy for rare tumors.

Yusuke Toyohara ¹, Kenbun Sone ¹, Katsuhiko Noda ², Kaname Yoshida ²

- 1. Department of Obstetrics and Gynecology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- 2. SIOS technology, Inc., Tokyo, Japan.

Introduction ~Uterine sarcomas~

Uterine sarcomas are rare, occurring in approximately 5 of 10,000 women.

Bosch. et al. Best. Pract. Res. Clin. Obstet. Gynaecol, 2012.

The five-year overall survival rate does not typically reach 50%, especially among patients in the advanced stages.

Burghaus. et al. Arch. Gynecol. Obstet. 2016.

Uterine myomas with degeneration frequently mimic uterine sarcomas on MRI, and misdiagnosis of uterine sarcomas as benign leiomyomas is not uncommon.

Sun. et al. *Diagn. Interv. Imaging.* 2019.

Introduction ~Image features of uterine sarcomas and myomas~

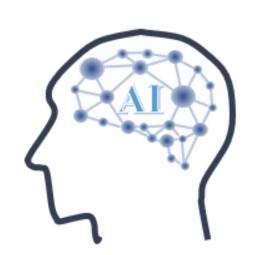
	Uterine myoma	Uterine sarcoma					
Size	Variable	Variable (>10 cm, associated with poorer prognosis)					
Margins	Well-defined	Irregular and ill-defined, often nodular and with invasion of adjacent structures					
Signal on T1WI	Low to intermediate High for fat content or hemorrhage	Heterogenous and low High for hemorrhage from necrosis					
Signal on T2WI	Generally, homogenous low signal Intermediate/high in degeneration	Intermediate to high signal					
DWI and ADC signal	Low DWI, low ADC SI: ordinary Low DWI, high ADC SI: degenerated	Generally high DWI and low ADC SI					
ADC values (10 ⁻³ mm ² /s)	0.88-1.40	0.79-1.17					
Contrast-enhanced MRI	Variable	Early heterogenous enhancement with central areas of contrast non-enhancement					

SI: signal intensity, T1WI: T1-weighted images; T2WI: T2-weighted images.

Sun, Diagnostic and Interventional Imaging, 2019

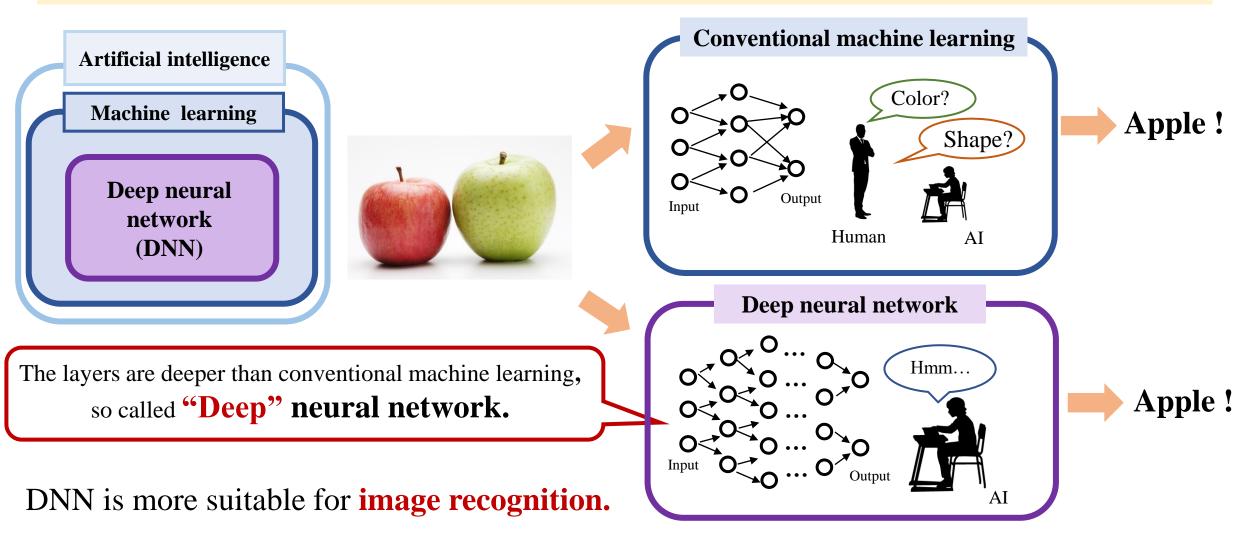
Image features are **overlapped between uterine sarcomas and myomas**. In some cases, it is difficult to diagnose uterine tumors, especially **degenerated tumors**.

Introduction ~Diagnosing problems of uterine tumors~

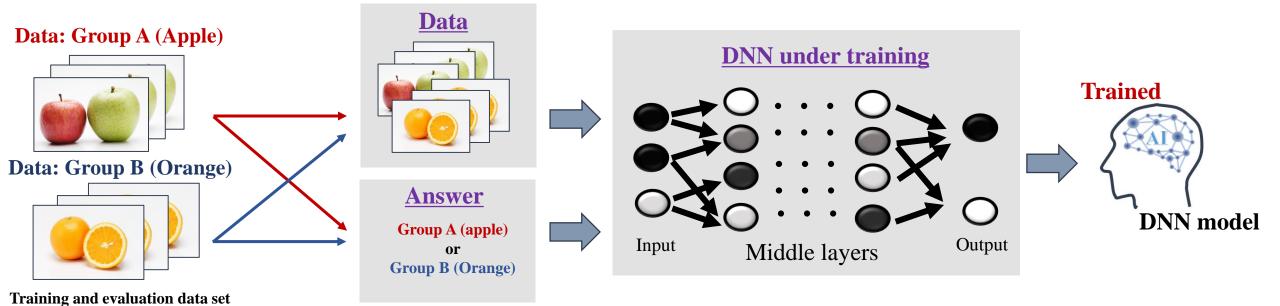


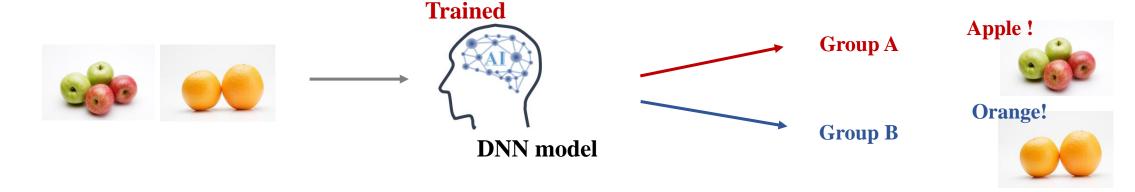
If misdiagnosis happens, it might happen... **Preoperative diagnosis** Uterine tumor **Malignancy** Total hysterectomy Loss of fertility

Poor prognosis Myomectomy **Benign** Hormone therapy etc. Due to tumor dissemination, Observation late diagnosis and etc.


Accurate preoperative diagnosis is critical for patients.

Can artificial intelligence(AI) be helpful?

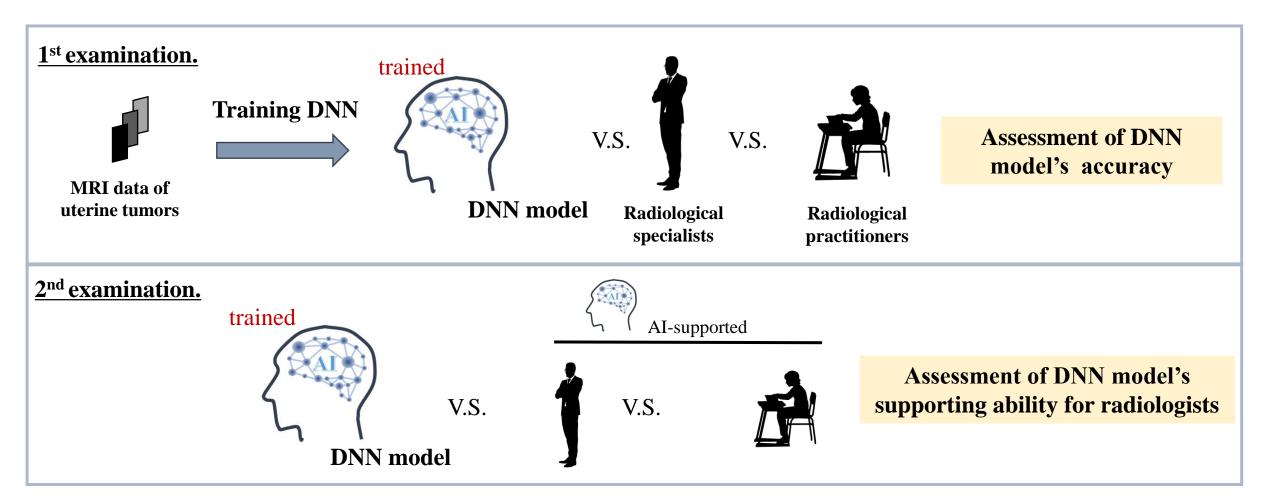

Artificial Intelligence (AI): Reproduction of human's neural activity in a computer.


Overall flow of clinical use of DNN model: image recognition

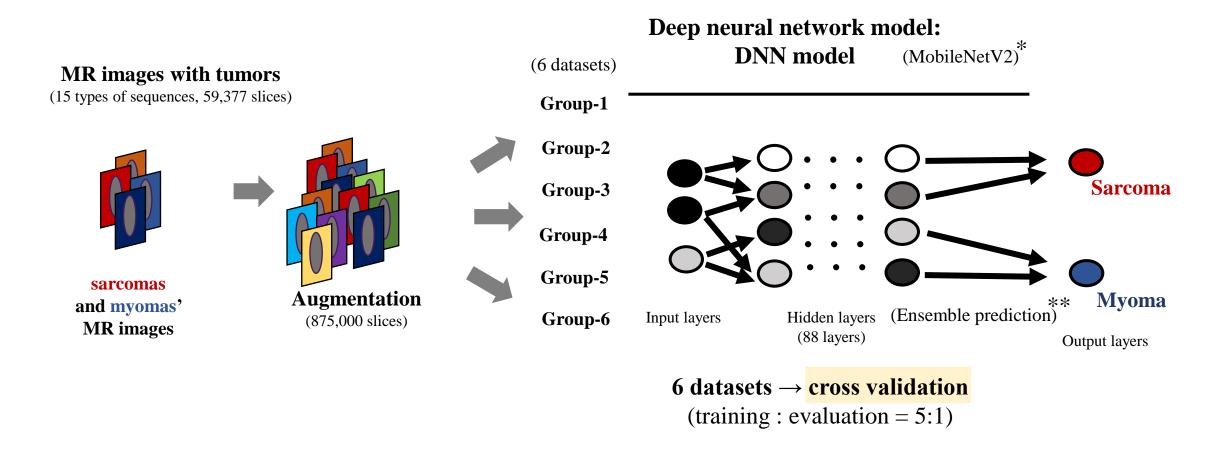
Training

Prediction

Previous reports for imaging diagnosis of uterine sarcomas with AI


	Authors	Years	Article	Images	Sarcoma	Myoma	Accuracy	DNN / Machine learning*	
1	Malek et al.	2019	European journal of radiology	MRI	9	33	accuracy 91% AUC 0.972	Machine learning	
2	Xie et al.	2019	European journal of radiology	MRI	29	49	accuracy 73.9% AUC 0.83	Machine learning	
3	Nakagawa et al.	2019	Clinical Radiology	MRI PET	11	56	AUC 0.92	Machine learning	
4	Lakhman et al.	2018	European radiology	MRI	19	22	accuracy 75%	Machine learning	
5	Gerges L et al.	2018	American Journal of Roentgenology	MRI	17	51	sensitivity 88.2% specificity 78.4%	Machine learning	
6	Wang et al.	2020	European Radiology	MRI	53	84	AUC 0.91	Machine learning	
7	Malek et al.	2020	Scientific Reports	MRI	21	84	Accuracy 96.2% Sensitivity 100% Specificity 95%	Machine learning	

No report which investigates diagnosis of uterine sarcoma using DNN.


Objects: Investigation of DNN model for imaging diagnosis of uterine sarcomas

Methods:

Methods ~ overall flow of this study ~

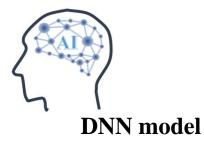
*MobileNetV2

MobileNetV2 is one type of DNN network which consists of 88 layers and has around 3.5million learning parameters.

**Ensemble prediction

Ensemble prediction is one method of machine learning and, in a simple term, a type of majority decision.

Results ~ diagnosing accuracy of each group ~


The 1st exam.

Radiological practitioners (n = 3)

Radiological specialists (n = 3)

Accuracy

69.6%

82.4%

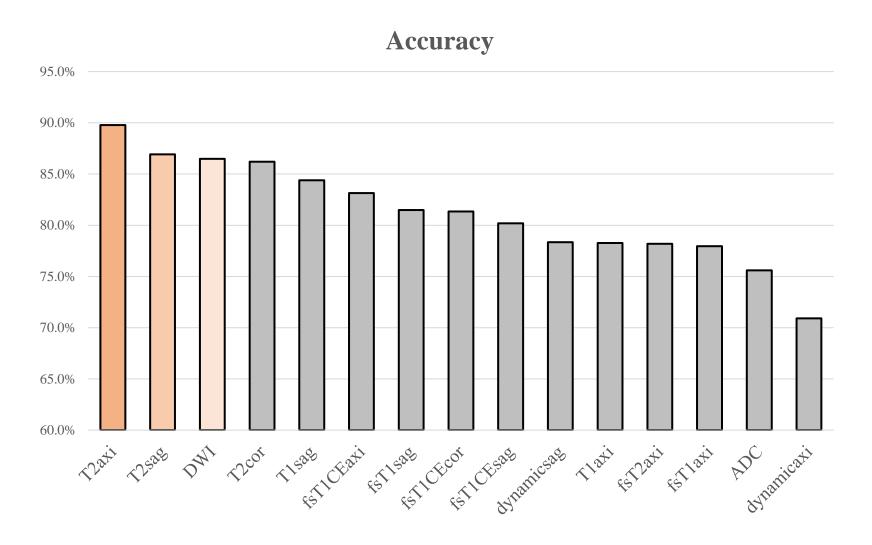
Sensitivity

47.6%

71.0%

Specificity

91.5%



91.7%

Results ~ individual MRI sequences ~

Results of individual MRI sequences.

TOP-3 of MRI sequences.

T2WI axial : 89.8%

T2WI sagittal : 86.9%

DWI : 86.5%

Results ~ TOP10 of combination sets of MRI sequences ~

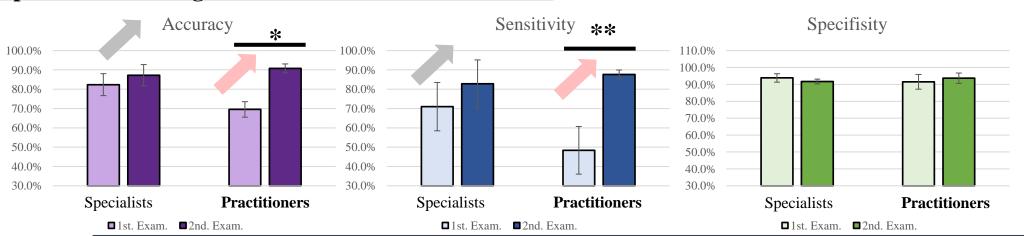
TOP10 of combination sets of MRI sequences.

Combination set	Accuracy	Sensitivity	Specificity	ADC	DWI	dynamicax	dynamicsag	fsT1axi	fsT1CEaxi	fsT1CEcor	fsT1CEsag	fsT1sag	fsT2axi	T1axi	T1sag	T2axi	T2cor	T2sag
Set 1	91.3%	88.7%	94.0%		•													
Set 2	91.3%	89.8%	92.9%			•	•	•	•	•	•	•	•	•	•	•	•	•
Set 3	91.1%	91.9%	90.3%	•	•	•	•	•		•	•	•	•		•	•	•	•
Set 4	91.0%	87.8%	94.2%	•									•					•
Set 5	90.8%	90.7%	90.9%		•	•	•	•	•	•		•	•		•	•	•	
Set 6	90.5%	90.5%	90.5%		•	•	•	•	•	•		•	•		•	•	•	•
Set 7	90.5%	88.5%	92.5%	•	•	•	•	•	•	•	•		•		•	•	•	•
Set 8	90.5%	89.6%	91.3%	•		•	•	•	•	•	•	•	•		•	•	•	
Set 9	90.4%	89.0%	91.8%		•	•	•		•	•	•	•	•	•	•	•	•	•
Set 10	90.3%	91.9%	88.8%		•	•	•	•	•	•	•	•	•	•		•	•	•
Average	90.8%	89.8%	91.7%															

The results combining MRI sequences can be better than that of individual sequences. T2WI axial, T2WI sagittal and DWI seem to be important sequences for DNN models.

Results ~ AI-supported examination~

The 2nd examination. (One month later)



Radiological practitioners(n=3)

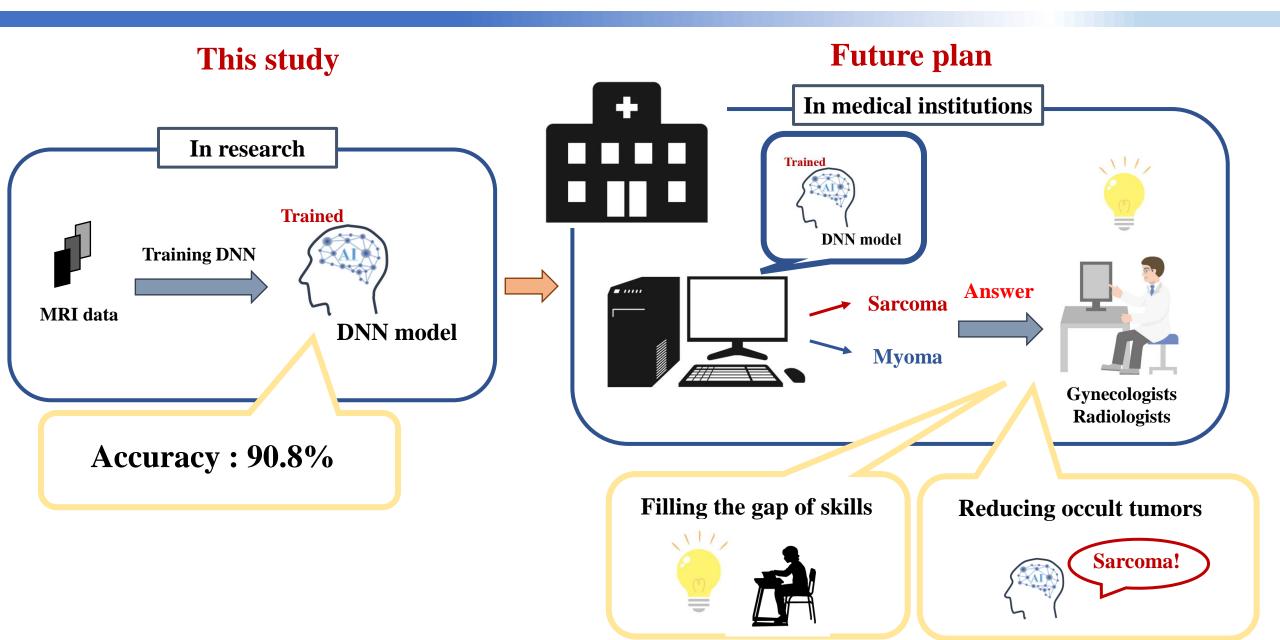
	Accuracy	Sensitivity	Specificity
DNN model (90.8%	89.8%	91.7%
Specialists	İ 87.3%	83.1%	91.7%
Practitioners 2	90.8%	87.8%	93.7%

The results of DNN model in the 1st examination were provided.

Comparison the average between 1st and 2nd examination.

* P value=0.01 ** P value=0.03

DNN models can be helpful for **filling the gap** of readers skills and **reducing occult tumors**.


Our DNN model shows

High diagnosing accuracy

■ Supporting ability to fill the gaps of readers

Supporting ability to reduce occult tumors

